Prof. Dr. Martin Vossiek

Department of Electrical-Electronic-Communication Engineering Institute of Microwaves and Photonics (LHFT)

Martin Vossiek is engaged in research and development on microwave theory and technology, radar systems, local position systems, wireless motion capture and localization, imaging and localization algorithms, machine learning and neural network-based radar signal processing and wireless sensor systems and sensor networks and RFID.

  • International Doctoral Program: Measuring and Modelling Mountain glaciers and ice caps in a Changing Climate (M³OCCA)

    (Third Party Funds Single)

    Project leader:
    Term: 1. June 2022 - 31. May 2026
    Acronym: MOCCA
    Funding source: Elitenetzwerk Bayern

    Mountain glaciers and ice caps outside the large ice sheets of Greenland and Antarctica contribute about 41% to the global sea level rise between 1901 to 2018 (IPCC 2021). While the Arctic ice masses are and will remain the main contributors to sea level rise, glacier ice in other mountain regions can be critical for water supply (e.g. irrigation, energy generation, drinking water, but also river transport during dry periods). Furthermore, retreating glaciers also can cause risks and hazards by floods, landslides and rock falls in recently ice-free areas. As a consequence, the Intergovernmental Panel of Climate Change (IPCC) dedicates special attention to the cryosphere (IPCC 2019; IPCC 2021). WMO and UN have defined Essential Climate Variables (ECV) for assessing the status of the cryosphere and its changes. These ECVs should be measured regularly on large scale and are essential to constrain subsequent modelling efforts and predictions.
    The proposed International Doctorate Program (IDP) “Measuring and Modelling Mountain glaciers and ice caps in a Changing ClimAte (M3OCCA)” will substantially contribute to improving our observation and measurement capabilities by creating a unique inter- and transdisciplinary research platform. We will address main uncertainties of current measurements of the cryosphere by developing new instruments and future analysis techniques as well as by considerably advancing geophysical models in glaciology and natural hazard research. The IDP will have a strong component of evolving techniques in the field of deep learning and artificial intelligence (AI) as the data flow from Earth Observation (EO) into modelling increases exponentially. IDP M3OCCA will become the primary focal point for mountain glacier research in Germany and educate emerging
    talents with an interdisciplinary vision as well as excellent technical and soft skills. Within the IDP we combine cutting edge technologies with climate research. We will develop future technologies and transfer knowledge from other disciplines into climate and glacier research to place Bavaria at the forefront in the field of mountain cryosphere research. IDP M3OCCA fully fits into FAU strategic goals and it will leverage on Bavaria’s existing long-term commitment via the super test site Vernagtferner in the Ötztal Alps run by Bavarian Academy of Sciences (BAdW). In addition, we cooperate with the University of Innsbruck and its long-term observatory at Hintereisferner. At those super test sites, we will perform joint measurements, equipment tests, flight campaigns and cross-disciplinary trainings and exercises for our doctoral researchers. We leverage on existing
    instrumentation, measurements and time series. Each of the nine doctoral candidates will be guided by interdisciplinary, international teams comprising university professors, senior scientists and emerging talents from the participating universities and external research organisations.

  • MQV Superconducting Qubits Quantum Computer Demonstrators

    (Third Party Funds Single)

    Project leader: , , ,
    Term: 1. January 2022 - 31. December 2026
    Acronym: MUNIQC-SC
    Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)

    Motivation

    Today, quantum computers are considered to be the computing machines of the future. They use so-called qubits instead of the conventional bits of classical computer technology. The special properties of these qubits allow the quantum computer to assume all states that can be represented with the qubits simultaneously, while conventional computers can only work with one of the combinations that can be represented by the available bits per computing step. Quantum computers can thus be used to solve tasks that conventional computers fail at. Processes at the molecular level can be simulated so that, for example, the mode of action of new active ingredients can be predicted for the pharmaceutical industry. Likewise, quantum computers can find ways to develop highly efficient battery storage or solve complex problems in traffic management.

    Objectives and approach

    The present collaborative project aims to build the demonstrator of a quantum computer based on superconducting circuits, as well as the peripherals necessary to interface the quantum computer to conventional computer systems. The work includes research into microwave circuits to control the qubits, research into integration methods for superconducting circuits, and extends to the development of customized compilers and runtime environments for the quantum computer. The associated quantum processor is expected to be able to compute with up to 100 qubits, and would thus be capable of representing ten to the power of thirty states simultaneously (which is about ten billion times the estimated number of stars in the universe).

    Innovation and perspectives

    The goal of the work is, among other things, to ensure reliable operation of such a quantum computer and, on the other hand, to create the periphery to make the computing power of this computer available to a broad group of users via cloud computing.

  • Munich Quantum Valley

    (Third Party Funds Single)

    Project leader: , , , , , , ,
    Term: 1. October 2021 - 30. September 2026
    Acronym: MQV
    Funding source: Bayerisches Staatsministerium für Wissenschaft und Kunst (StMWK) (seit 2018)

    Quantum information processing (QIP), and generally the useof quantum technologies (QT) for communication, sensing, metrology andcomputational purposes, has become a key technology during the last decade forthe advancement of science and technology. The capability to prepare andmanipulate quantum states and to generate superpositions and entanglement ondemand has led to the development of measurement and computational procedures,which promise to perform well beyond classical tools. During the last twodecades, the physics of quantum information (QI) has been developed inlaboratories and routes to quantum devices with unsurpassed features have beendemonstrated [ARU19]. In particular, it has been shown that quantum computing(QC) promises unprecedented computational power for the solution of some hardproblems, especially when quantum features are involved, as for example, inchemical calculations and for quantum simulations of many-body problems as arefrequently encountered in material sciences. Moreover, quantum proceduresenhance optimization routines and can be used for the efficient solution ofsome hard mathematical problems, such as factoring.

    During the last decade,laboratory realizations of quantum computers have demonstrated their unique computationalcapabilities and spawned the efforts to make such devices available for a wideruse in industrial applications. IBM has made quantum computers available viacloud access and attracted a huge number of users and customers who want to getthemselves acquainted with the new technology. Google has demonstrated whatthey coined “quantum supremacy”, i.e., it shows a large speedup compared withclassical computational power. While the hitherto demonstrated algorithm(random circuits) is useless for practical purposes, it clearly demonstratedthe quantum advantage that can be achieved. Such a computational potential ledto the establishment of hundreds of startups, both hardware and softwareoriented, in search of realizing scalable quantum devices and algorithms. Whilemuch of the foundations and many demonstrated quantum features were obtained inEurope, most of these newly founded companies were established in the US,Canada, in Australia, some in the UK, the Netherlands and elsewhere in Europe,but very few in Germany. Realizing the potential advantages of QC and thegeneral-purpose use of QT and pertaining devices, several initiatives arecurrently forming to establish QC and QT in Germany and, especially, inBavaria. Expertise in QC and QT will enable advanced technologies and ensurethe leading role of the German and the Bavarian industry for decades to come.

    MQV – the Munich Quantum Valley initiative intends to combine the profoundquantum knowledge of the research institutes and universities in Bavaria withexpert technologies of companies and industry to develop and provide QCtechnology, and more generally, expertise in QT. New startup companies areexpected to be established in the course of the proposed work, enhancing thetechnology environment and making Bavaria increasingly attractive for researchand development. Moreover, the initiative aims at educating a new generation ofengineers with a quantum technology background and quantum physicists withsolid engineering expertise to establish the basis for new quantum applicationsand quantum devices as a resource for shaping the future.

2026

2025

2024

2023

2022

2021

2020

Related Research Fields:

Contact: