Prof. Dr. Anne Koelewijn

Chair of Machine Learning and Data Analytics Lab

It is my goal to improve movement for people, e.g. those with a disability or athlete. To do so, I aim to better understand human motion, and design better devices, such as prostheses, exoskeletons, and running shoes, as well as prevent injuries, such as knee osteoarthritis. I focus on wearable technologies and the combination of physics-based models with machine learning methods.

Research projects

Personalized musculoskeletal models and gait simulations: using imaging techniques such as diffusion tensor imaging (DTI), as well as using machine learning methods, we aim to personalize musculoskeletal models and gait simulations, such that we can per

  • Biomechanical Assessment and Simulation

    (Third Party Funds Single)

    Term: 1. August 2019 - 1. August 2022
    Funding source: Industrie

    The goal of this project is to develop data-based and knowledge-based methods for accurate analysis and simulation of human motion, focused on gait. Movement simulations are created by solving trajectory optimization problems, using an objective related to energy, a musculoskeletal model to model the body and muscle dynamics, and constraints to define the movement task. We use data-based approaches to improve musculoskeletal models and simulation accuracy. With our research, we aim to better understand human motion, and thereby improve design of wearables, such as prostheses, exoskeletons, and running shoes.




Related Research Fields