Prof. Dr. Dr. Robert Weigel

Institute for Electronics Engineering

The Institute for Electronics Engineering (www.lte.tf.fau.eu) is engaged with design of microelectronic, monolithically or hybrid integrated circuits, components and systems for both wireless and wired communication and sensing. Our research encompasses both the design and experimental characterization in the frequency range from DC to 400 GHz and the development of signal processing and deep learning algorithms.

The research work is embedded into cooperation projects funded by the EU and German and Bavarian ministries and research associations as well as directly funded by DFG or industry. All of our research is hardware-oriented. We are researching in the fields of mobile communication hand-sets and base stations, radar, local positioning, scanning and tracking systems, various sensor technologies, integrated RF/mixed.signal circuits, electronic hetero-integration and packaging for industrial, scientific and medical applications.

Current projects

  • Quantum Measurement and Control for the enablement of quantum computing and quantum sensing

    (Third Party Funds Single)

    Term: 1. January 2023 - 31. December 2025
    Funding source: Bayerisches Staatsministerium für Wissenschaft und Kunst (StMWK) (seit 2018)
  • Industrialisierbare Schlüsseltechnologien für energieeffiziente Tbit-Transceiver in 6G Mobilfunksystemen

    (Third Party Funds Group – Overall project)

    Term: 1. October 2022 - 31. March 2026
    Funding source: BMBF / Verbundprojekt

    MOTIVATION

    Der Mobilfunk der sechsten Generation (6G) wird gänzlich neue Anwendungsszenarien in der Industrie, der Medizintechnik und dem alltäglichen Leben ermöglichen. Damit einher gehen neue und höhere Anforderungen an die Latenz, die übertragbare Datenrate, die räumliche Auflösung, sowie die Datenverarbeitung und das Energiemanagement der Kommunikationssysteme, welche derzeit nicht erfüllt werden können. Eine vielversprechende technologische Lösung bietet die Erschließung neuer Funkfrequenzen bis in den Terahertzbereich (THz). Damit können extrem hohe Datenraten und eine hochauflösende sensorische Erfassung ermöglicht werden. Für die Realisierung von 6G ist es daher wichtig, energieeffiziente THz-Empfänger und -sender mit steuerbarer Richtcharakteristik zu entwickeln, welche über hohe Signalgüte und Bandbreite verfügen. Unter anderem eröffnen optoelektronische Technologien hier vielversprechende Lösungsansätze.

    ZIELE UND VORGEHEN

    Im Projekt „Industrialisierbare Schlüsseltechnolo-gien für energieeffiziente Tbit-Transceiver in 6G Mobilfunksystemen - ESSENCE-6GM“ werden Lösungen erforscht, um Sende- und Empfangs-module für den Frequenzbereich knapp unter der Terahertzstrahlung (sub-THz) zu realisieren, welche ein kritischer Bestandteil künftiger 6G-Systeme sein werden. Für die technische Umsetzung stehen Wirtschaftlichkeit und Umweltverträglichkeit an erster Stelle: Die Lösungen müssen in zukünftigen industriellen Serienproduktionen kostengünstig realisierbar und im Vergleich zu heutigen Lösungen im Betrieb deutlich energieeffizienter sein. Das Projekt setzt gezielt bei den kritischen Schwachpunkten heutiger Sender- und Empfängersysteme an: Durch die Einführung neuer Konzepte bei der Analog- und Digitalwandlung, Schaltungstechnik und Modulintegration können Sender- und Empfangseinheiten für sub-THz-Systeme energieeffizienter und hochleistungsfähiger gemacht werden. Zu Projektende ist die Demonstration eines Mehrantennensystems geplant, mit dem Datenraten von bis zu einem Terabit pro Sekunde über 10 Meter hinaus in ausgewählten Nutzungsszenarien übertragen werden können.

    INNOVATIONEN UND PERSPEKTIVEN

    Im Projekt Essence-6GM werden Komponenten entwickelt, die eine leistungsfähige Übertragung im sub-THz-Bereich bei hoher Energieeffizienz ermöglichen. Insgesamt trägt das Projekt dazu bei, dass Deutschland eine führende Rolle bei der Ausgestaltung der 6G-Standards einnimmt und der Anteil von in Europa hergestellten Schlüsselkomponenten für 6G-Systeme gesteigert wird. Dies ist ein wesentlicher Beitrag, um die technologische Souveränität Deutschlands und Europas zu stärken.

  • Flexible Elektronisch-Photonisch Integrierte Sensor Plattform II [EPIC-Sense II]

    (Third Party Funds Group – Sub project)

    Overall project: Electronic-Photonic Integrated Systems for Ultrafast Signal Processing
    Term: since 1. September 2022
    Funding source: DFG / Schwerpunktprogramm (SPP)
    This proposal aims to explore a scalable, two-stage electronic-photonic MIMO radar system in the millimeter-wave range. In phase I of SPP 2111, the coherent optical distribution of the local oscillator signal was already addressed as well as the broadband integration of an electronic-photonic FMCW radar front-end. The vision for Phase II of SPP 2111 is the extension of a monolithically integrated electronic-photonic FMCW radar system by a new frequency-division multiplexing approach, which is realized by a new additional optical data-bus transmitting a high data rate coding scheme. With the help of this additional coding, a large amount of coherent 2x2 radar modules can be differentiated, while concentrating the computationally intensive coding in a central node. Especially for the electro-optical interfaces, intensive research into new technologies of optical modulation methods and components is necessary in order to meet the challenging bandwidth requirements.
  • Intelligentes robustes 320 GHz Radar-Edge-Sensornetzwerk

    (Third Party Funds Group – Overall project)

    Term: since 1. July 2022
    Funding source: BMBF / Verbundprojekt

    MOTIVATION

    Die zunehmende Zahl von vernetzten Geräten und Sensoren, das „Internet of Things“ (IoT), ermöglicht vielfältige und neue Anwendungen. Sie sorgt aber auch für eine rasant wachsende Datenmenge. Die Verarbeitung von Daten an ihrem Entstehungsort (Edge Computing) hilft, damit effizient umzugehen. Edge Computing stärkt dabei die Funktionalität, Nachhaltigkeit, Vertrauenswürdigkeit und Wirtschaftlichkeit von Elektronikanwendungen durch den Einsatz von Künstlicher Intelligenz und Vernetzung. Ziel der OCTOPUS-Projekte ist es, anwendungsbezogen hochinnovative Elektronik bereitzustellen, um diese Vorteile zu erschließen.

    ZIELE UND VORGEHEN

    Ziel des Projekts ist es, Radarsensoren zu entwickeln, die als künstliche Sinnesorgane fungieren können. Die Messfrequenz von 320 GHz ermöglicht eine hohe Auflösung. Sie wird durch einen neuen 90 nm BiCMOS-Halbleiterfertigungsprozess erreicht. Es werden grundlegende Schaltungen, Antennenkonzepte sowie eine 160 GHz Kommunikationsschnittstelle für die Radarmodule erforscht. In hoher Anzahl an Objekte angebracht und miteinander vernetzt, bilden die Sensoren eine Schutzhülle, die mithilfe intelligenter Algorithmen ihr Umfeld wahrnehmen kann. Die Sensordaten werden dabei sowohl in den Radarmodulen als auch in einem zentralen Rechensystem verteilt und energieeffizient verarbeitet. Für einen effizienten Datenaustausch werden zudem Datenkompressionsverfahren entwickelt. Die Funktionalität wird anhand von Automotive-Szenarien erprobt.

    INNOVATIONEN UND PERSPEKTIVEN

    Die Schutzhülle stellt eine „Radarhaut“ als künstliches Sinnesorgan dar und birgt hohes Potenzial für zukünftige, autonom agierende Systeme wie unbemannte Fahrzeuge, Drohnen, Industrie- oder Haushaltsroboter. Damit können sie sich im Umfeld des Menschen bewegen und mit Menschen sowie mit anderen autonomen Systemen sicher interagieren.

  • MQV Superconducting Qubits Quantum Computer Demonstrators

    (Third Party Funds Single)

    Term: 1. January 2022 - 31. December 2026
    Funding source: Bundesministerium für Bildung und Forschung (BMBF)

    Motivation

    Quantencomputer gelten heute als die Rechenmaschinen der Zukunft. Sie verwenden sog. Qubits statt der herkömmlichen Bits der klassischen Computertechnik. Die besonderen Eigenschaften dieser Qubits erlauben dem Quantencomputer, alle mit den Qubits darstellbaren Zustände gleichzeitig einzunehmen, während herkömmliche Computer pro Rechenschritt nur mit einer der durch die verfügbaren Bits darstellbaren Kombination arbeiten können. Mit Quantencomputern lassen sich so Aufgaben lösen, an denen herkömmliche Computer scheitern. Vorgänge auf molekularer Ebene lassen sich simulieren, so dass z. B. die Wirkungsweise von neuen Wirkstoffen für die Pharmaindustrie vorhergesagt werden kann. Ebenso können Quantencomputer Wege finden, um hocheffiziente Batteriespeicher zu entwickeln, oder komplexe Probleme im Verkehrsmanagement lösen.

    Ziele und Vorgehen

    Im vorliegenden Verbundprojekt soll der Demonstrator eines Quantencomputers auf der Basis supraleitender Schaltkreise aufgebaut werden und ebenso die Peripherie, die notwendig ist, um den Quantencomputer an herkömmliche Computersysteme anzubinden. Die Arbeiten umfassen die Erforschung von Mikrowellenschaltkreisen zur Kontrolle der Qubits, die Erforschung von Integrationsmethoden für supraleitende Schaltkreise, und reichen bis zur Entwicklung angepasster Compiler und Laufzeitumgebungen für den Quantencomputer. Der zugehörige Quantenprozessor soll mit bis zu 100 Qubits rechnen können und wäre damit in der Lage zehn hoch dreißig Zustände gleichzeitig darstellen zu können (das ist etwa das Zehnmilliardenfache der Anzahl an Sternen, die das Universum schätzungsweise hat).

    Innovation und Perspektiven

    Ziel der Arbeiten ist es u.a. einen zuverlässigen Betrieb eines solchen Quantencomputers sicherzustellen, und auf der anderen Seite die Peripherie zu schaffen, um die Rechenleistung dieses Computers für eine breite Gruppe von Anwendern per Cloud-Computing zur Verfügung zu stellen.

  • Terahertz Digital Chess-Board-Modulated Spread-Spectrum System for Radar and Communication Comprising 200 GHz Bandwidth

    (Third Party Funds Group – Sub project)

    Overall project: INtegrated TERahErtz sySTems Enabling Novel Functionality (INTEREST)
    Term: since 1. January 2022
    Funding source: DFG / Schwerpunktprogramm (SPP)
    TIEMPO proposes the realization of an I/Q transceiver chipset for spread-spectrum digital noise radar operating in the frequency range from 220 GHz to 420 GHz. This corresponds to a record bandwidth of 200 GHz. In this project we innovate on the idea of the frequency modulated continuous wave (FMCW) comb radar, by proposing a concept that can be viewed as a digital radar counterpart to a frequency comb radar. To achieve the extremely wide bandwidth we propose a novel system architecture implementing a “chess-board spectrum division”. Thanks to an elegant system level solution, a single oscillator at a fixed frequency is sufficient to generate five local oscillator (LO) carrier frequencies to cover the entire bandwidth. Furthermore, due to the high-speed I/Q mixed-signal components in combination with the “chess-board” concept, we reduce the number of required transmit/receive channels by two. This architecture can also be used for communication systems, as the digital sequence is generated externally.This extremely wide bandwidth imposes difficult challenges at the circuit design level, which is the main focus of this proposal: (1) I/Q data converters with 8-bit resolution, 20 GHz bandwidth, and 40 Gbps data-rate; (2) I/Q transmitter and receiver operating above 400 GHz; (3) LO signal generation to cover the entire bandwidth; (4) on-chip antennas with 200 GHz bandwidth and high efficiency. These operation frequencies are very close or above fmax of the technology intended for experimental validation, which is the 22 nm FD-SOI (Fully-Depleted Silicon-On-Insulator) CMOS process of Globalfoundries. This requires novel circuit and system level approaches to circumvent technology limitations. To our knowledge, this is the first digital spread-spectrum radar transceiver concept proposed in this frequency range, and the first operating over a bandwidth of 200 GHz.
  • Erforschung und Evaluation von organischen Laminaten für Verbindungskonzepte in Multi-Chip-Modulen

    (Third Party Funds Single)

    Term: 1. January 2022 - 31. December 2024
    Funding source: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)

    Innovative, smarte elektronische Systeme werden meist erst durch dieVernetzung und den Einsatz von KI intelligent, also smart. Dies ziehteinerseits die Notwendigkeit nach einer wesentlich performanteren Verbindungder Komponenten innerhalb des Systems nach sich, als auch nach einerhoch-performanten Vernetzung einer Vielzahl solcher Systeme. Ist für den erstenAspekt insbesondere die Anbindung der Recheneinheit (DSP, FPGA oder ähnlich) andessen Peripherie entscheidend, so ist für die hochdatenratige Vernetzunginsbesondere eine sehr performante Verbindungsstruktur zwischen Recheneinheitund Schnittstelle zum Transportnetz notwendig. Hierbei realisiert dieSchnittstelle oft den Übergang von der elektrischen Domäne in die optischeÜbertragung. Um die erforderlichen Datenraten zwischen der Recheneinheit undder Schnittstelle physikalisch möglich zu machen, sind neue Aufbau- undVerbindungstechniken erforderlich, einhergehend mit neuen effizientenVerbindungsstrukturen. Insbesondere die dafür erforderliche enorme analogeBandbreite von 110GHz erfordert hier neue innovative Ansätze.

    Moderne Fertigungstechnologien wie organische Multi-Chip-Module (MCM)erlauben den notwendigen hohen Integrationsgrad verschiedenster Komponenten aufeiner gemeinsamen Systemebene. Für viele Anwendungsbereiche wie beispielsweiseim Mobilfunk und in der optischen Datenkommunikation stellt das Verbinden vondigitalen Signalprozessoren (DSPs) und Speicherblöcken oder Interfacebausteinenauf einem gemeinsamen Trägermaterial (Interposer) einen entscheidenden Vorteildar. Dies wird im Rahmen des Projekts untersucht.

  • 6G-Forschungs-Hubs; Plattform für zukünftige Kommunikationstechnologien und 6G

    (Third Party Funds Single)

    Term: 1. August 2021 - 31. July 2025
    Funding source: Bundesministerium für Bildung und Forschung (BMBF)

    Der Open6GHub wird zur Entwicklung einer 6G Gesamtarchitektur, aber auch Ende-zu-Ende Lösungen unter anderem in folgenden Bereichen beitragen: erweiterte Netzwerktopologien mit hochagiler sogenannter organischer Vernetzung, Security- und Resilienz, Thz- und photonische Übertragungs verfahren, Sensorfunktionalitäten in den Netzen und deren intelligente Nutzung und Weiterverarbeitung und anwendungsspezifische Radioprotokolle.
    An der FAU werden unter Leitung von Prof. Franchi (ESCS), Prof. Weigel (LTE) und Prof. Vossiek (LHFT) insbesondere Joint-Communications-and-Sensing-Technologien und deren Anwendungen in resilienten 6G-Campusnetzen erforscht. Die einzelnen Lehrstühle der FAU widmen sich der Konzeptent-, Hardware- und Systementwicklung in verschiedenen Frequenzbändern.

  • Höchstintegrierter lokalisierbarer EMG-Funktransponder

    (Third Party Funds Group – Sub project)

    Overall project: Empathokinästhetische Sensorik - Sensortechniken und Datenanalyseverfahren zur empathokinästhetischen
    Modellbildung und Zustandsbestimmung (EmpkinS)
    Term: 1. January 2021 - 31. December 2025
    Funding source: DFG / Sonderforschungsbereich (SFB)
    URL: https://www.empkins.de/

    In diesem TP sollen lokalisierbare Elektromyographie (EMG)-Funktransponder entworfen und realisiert werden, um erstmals Oberflächen-EMG-Daten synchron mit einer hochgenauen Funkortung in Echtzeit erfassen zu können. Hierfür wird ein 61-GHz-Transceiver in CMOS-Technologie entworfen, der das für das holografische Funkortungsverfahren notwendige phasenkohärente Signal aussendet und gleichzeitig extrem energiesparend ausgelegt werden muss. In einem weiteren Schritt soll der Transceiver in einer EMG-Sensorplattform integriert werden, die in Versuchsreihen an Probanden z. B. im Gesicht oder an den Beinen zur Analyse der Mimik oder des Ganges evaluiert werden soll.

  • Frequenzselektive FM-Empfängerarchitekturen zur Steigerung der Sicherheit in der zivilen Luftfahrt

    (Third Party Funds Single)

    Term: 1. January 2020 - 30. June 2023
    Funding source: Bundesministerium für Wirtschaft und Technologie (BMWi)

    Passive radar technology represents a promising addition to conventionalradar systems. With increasing demands from economy and politics to completelyuse the limited spectrum of the frequency bands limited for telecommunicationsand location, the interest in this technology is increasing.

    The aim of this research project is to establish the technology of locationusing passive radar technology in civil air traffic control in Germany and to opennew areas of application.

    To improve the detection performance, various options for setting up afrequency-selective analog receiver for the FM band are being developed andintegrated into an existing passive radar system. For the highest possiblesensitivity, filtering in different stages of the receiver is essential.However, this must be evaluated together with the frequency-converting stagesin the overall system context in order not to degrade the signal quality,including through possible imperfections in the analog implementation. Furthermore,attention must also be paid to an optimal balance between circuit complexity,costs and compactness of the receiver. For this purpose, the receiverarchitectures are first examined in system simulations and evaluated regardingthe requirements from the application. This is followed by a prototypeconstruction of the most promising concepts with metrological verification ofthe individual components and evaluation of the entire system in a field test.

Recent publications

2023

2022

2021

2020

Related Research Fields

Contact: