We research in Medical Electronics, biosignal acquisition (ECG, EMG, …), Sensor design, body area networks, and wearables. Our general objective is to design these electronic systems that they can easily integrate into daily life in a seamless way. We also research the necessary wireless radio connectivity (Bluetooth, 4G Cellular NB-IoT, body confined communication)
Research projects
Circuit technology for capacitive ECG works through 2 mm of isolation! Also well suited for ECG with wearables
Body confined communication, no easvesdropping of communication
The increasing number of networked devices and sensors, the "Internet of Things" (IoT), enables diverse and new applications. However, it is also generating a rapidly growing volume of data. Processing data at its point of origin (edge computing) helps to deal with it efficiently. Edge computing strengthens the functionality, sustainability, trustworthiness and cost-effectiveness of electronic applications through the use of artificial intelligence and networking. The goal of the OCTOPUS projects is to provide application-specific, highly innovative electronics to unlock these benefits.
Goals and strategy
The aim of the project is to create the technological basis for an AI-supported, flexible, efficient and scalable multi-access edge cloud (MEC) with which future mobile networks can be realized. This should have low latency, high frequency agility and high data rates. To this end, analog and digital circuits will be designed, built and verified to linearize the radio signals to be transmitted using a centralized AI-powered algorithm. New approaches will be used to achieve the energy efficiency, frequency flexibility, bandwidth, scalability and cost efficiency requirements of the system. The focus is on new power amplifier architectures based on gallium nitride (GaN) and a new overall architecture that reduces the complexity of the MEC.
Innovations and perspectives
The MEC can be used to build powerful and efficient mobile networks that support complex applications, for example from industry or mobility. A special special focus is on the use of particularly energy-efficient technologies in order to promote not only digital progress as well as promoting the European Green Deal.
Peilalgorithmen und gehärtete Hardware (VPX-GPU/FPGA) für den Grenz- und Inlandsschutz
(Third Party Funds Single)
Term: 1. November 2020 - 31. October 2023 Funding source: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)
Peil-Systeme zurIdentifikation von Funksignale und damit zur Identifikation von unbekanntenFunkquellen sind ein wichtiges Instrument in der Aufklärung und der Ortungelektromagnetischer Aussendungen.
Derrechentechnische Aufwand, der in modernen, hochqualitativen Peilanlagenabgedeckt werden muss, ist generell sehr hoch und erfordert eine entsprechendleistungsfähige und aufwändige Infrastruktur (Rechnerressourcen, Netzwerk,Stromversorgung, Kühlung, Systemintegration). Dies spielt bei stationären Systemen- abgesehen vom Preis - eine eher untergeordnete Rolle, da man dieseInfrastruktur vergleichsweise einfach bereitstellen kann. Bei mobilen Systemenhingegen stößt man sehr schnell an Grenzen, die teils durch die mobilePlattform selbst (u.a. Landfahrzeug, Schiff, Flugzeug) und teils durch denEinsatzfall bestimmt werden. Mit verschiedenen Mitteln und unter Hinnahmegewisser Einschränkungen kann man gute Peilanlagen auch auf mobilen Plattformeneinsetzen, allerdings treibt das den Aufwand und die Kosten immens in die Höhe.
Das Projekt soll einemögliche Implementierung mobiler Peilsysteme analysieren, erforschen underproben. Hierfür werden verschiedene Hardware-Lösungen verifiziert undverglichen. Zudem werden innovative Algorithmen entwickelt, die für mobileSystem mit weniger performanter und weniger effizienter Hardware zugeschnittensind, um ein sowohl mobiles als auch möglichst effizientes System zu erhalten.Hierzu werden in diesem Projekt hochspezialisierte Hardware wie FPGAs oder GPUsverwendet, um die Systeme effizienter, kleiner und leichter zu machen.
Multiport and multimodal energy harvesting array systems require further circuit advancements. Wearables for health monitoring are an excellent energy harvesting example at raising interest. Further applications: smart city, building/bridge structure and environmental monitoring
Should be energy autonomous for easy handling, no charger, always ready to go for 24/7 use
SoA: Only single port harvesters! Require multiport harvesters for multiple asynchronous energy sources!
Multimodal harvesting (pressure, solar, thermal,…) and arrays increase availability of energy
Energy harvesting at high conversion efficiency needed
Provision of energy for: (i) local sensor acquisition, (ii) local data processing, and (iii) Wireless connectivity, WAN needs more energy than BAN
Wireless connectivity BAN (Body Area Network, e.g. Bluetooth) replaced by WAN (Wide Area Network, cellular IoT)
The primary research goal is the development of improved circuit design for multiport harvesters dealing with asynchronous energy sources in a piezo array
Can the piezo elements be simultaneously used as sensors and energy providers?
How to deal with asynchronous energy sources?
How to ensure high availability and stability of energy?
Elhaddad, A., Irnstorfer, F., & Fischer, G. (2022, May). 450 MHz for Smart Metering & Smart Grid. Poster presentation at 21. ITG/GMA Fachtagung Sensoren und Messsysteme 2022, Nürnberg, DE.
Bhadauria, S., Roshdi, M., Shawky Hassan, K., & Fischer, G. (2021). Deep Reinforcement Learning Based Congestion Control for {V2X}
Communication. In 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC): International workshop on beyond 5G
support for the future vehicular networks (IEEE PIMRC 2021 - WS3).
Bruckmeyer, H., Bühlmeyer, J., Ackermann, T., & Fischer, G. (2021). Time Synchronization of Spatial Separated Areas for AV-Production. In 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS) (pp. 1-6). IEEE.
Gäde, B., Erhardt, S., Fischer, G., & Müller, R. (2021). An Outphasing MIMO Architecture Prototype. In Proceedings of the European Microwave Week 2020. Jaarbeurs Convention Centre
Utrecht
(Virtual conference due to COVID-19).
Ahmed, D., Kirchner, J., & Fischer, G. (2020). Signal Transmission with Intra-Body and Inter-Body Communications. In Chika Sugimoto, Hamed Farhadi, Matti Hämäläinen (Eds.), 13th EAI International Conference on Body Area Networks. (pp. 105-118). Cham: Springer.
Bartunik, M., Thalhofer, T., Wald, C., Richter, M., Fischer, G., & Kirchner, J. (2020). Amplitude Modulation in a Molecular Communication Testbed with Superparamagnetic Iron Oxide Nanoparticles and a Micropump. In Alam M.M., Hämäläinen M., Mucchi L., Niazi I.K., Le Moullec Y. (Eds.), Body Area Networks. Smart IoT and Big Data for Intelligent Health. BODYNETS 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 330. (pp. 92-105). Online: Cham: Springer International Publishing.
Bereyhi, A., Jamali, V., Müller, R., Tulino, A.M., Fischer, G., & Schober, R. (2020). A Single-RF Architecture for Multiuser Massive MIMO Via Reflecting Surfaces. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings (pp. 8688-8692). Barcelona, ES: Institute of Electrical and Electronics Engineers Inc..
Bhadauria, S., Shabbir, Z., Roth-Mandutz, E., & Fischer, G. (2020). QoS based Deep Reinforcement Learning for V2X Resource Allocation. In 2020 IEEE International Black Sea Conference on Communications and Networking, BlackSeaCom 2020. Odessa, UA: Institute of Electrical and Electronics Engineers Inc..
We research in Medical Electronics, biosignal acquisition (ECG, EMG, …), Sensor design, body area networks, and wearables. Our general objective is to design these electronic systems that they can easily integrate into daily life in a seamless way. We also research the necessary wireless radio connectivity (Bluetooth, 4G Cellular NB-IoT, body confined communication)
Research projects
Current projects
Elektronik mit neuartigen Materialien für Edge-Computing in Mobilfunknetzen
(Third Party Funds Group – Overall project)
Funding source: BMBF / Verbundprojekt
Motivation
The increasing number of networked devices and sensors, the "Internet of Things" (IoT), enables diverse and new applications. However, it is also generating a rapidly growing volume of data. Processing data at its point of origin (edge computing) helps to deal with it efficiently. Edge computing strengthens the functionality, sustainability, trustworthiness and cost-effectiveness of electronic applications through the use of artificial intelligence and networking. The goal of the OCTOPUS projects is to provide application-specific, highly innovative electronics to unlock these benefits.
Goals and strategy
The aim of the project is to create the technological basis for an AI-supported, flexible, efficient and scalable multi-access edge cloud (MEC) with which future mobile networks can be realized. This should have low latency, high frequency agility and high data rates. To this end, analog and digital circuits will be designed, built and verified to linearize the radio signals to be transmitted using a centralized AI-powered algorithm. New approaches will be used to achieve the energy efficiency, frequency flexibility, bandwidth, scalability and cost efficiency requirements of the system. The focus is on new power amplifier architectures based on gallium nitride (GaN) and a new overall architecture that reduces the complexity of the MEC.
Innovations and perspectives
The MEC can be used to build powerful and efficient mobile networks that support complex applications, for example from industry or mobility. A special special focus is on the use of particularly energy-efficient technologies in order to promote not only digital progress as well as promoting the European Green Deal.
Peilalgorithmen und gehärtete Hardware (VPX-GPU/FPGA) für den Grenz- und Inlandsschutz
(Third Party Funds Single)
Funding source: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)
Peil-Systeme zurIdentifikation von Funksignale und damit zur Identifikation von unbekanntenFunkquellen sind ein wichtiges Instrument in der Aufklärung und der Ortungelektromagnetischer Aussendungen.
Derrechentechnische Aufwand, der in modernen, hochqualitativen Peilanlagenabgedeckt werden muss, ist generell sehr hoch und erfordert eine entsprechendleistungsfähige und aufwändige Infrastruktur (Rechnerressourcen, Netzwerk,Stromversorgung, Kühlung, Systemintegration). Dies spielt bei stationären Systemen- abgesehen vom Preis - eine eher untergeordnete Rolle, da man dieseInfrastruktur vergleichsweise einfach bereitstellen kann. Bei mobilen Systemenhingegen stößt man sehr schnell an Grenzen, die teils durch die mobilePlattform selbst (u.a. Landfahrzeug, Schiff, Flugzeug) und teils durch denEinsatzfall bestimmt werden. Mit verschiedenen Mitteln und unter Hinnahmegewisser Einschränkungen kann man gute Peilanlagen auch auf mobilen Plattformeneinsetzen, allerdings treibt das den Aufwand und die Kosten immens in die Höhe.
Das Projekt soll einemögliche Implementierung mobiler Peilsysteme analysieren, erforschen underproben. Hierfür werden verschiedene Hardware-Lösungen verifiziert undverglichen. Zudem werden innovative Algorithmen entwickelt, die für mobileSystem mit weniger performanter und weniger effizienter Hardware zugeschnittensind, um ein sowohl mobiles als auch möglichst effizientes System zu erhalten.Hierzu werden in diesem Projekt hochspezialisierte Hardware wie FPGAs oder GPUsverwendet, um die Systeme effizienter, kleiner und leichter zu machen.
GRK 2495: Project A – Electronic Circuits for Piezoelectric Energy Harvesting and Sensor Array Systems
(Third Party Funds Group – Sub project)
Term: 1. July 2020 - 30. June 2024
Funding source: DFG / Graduiertenkolleg (GRK)
URL: https://www.igk2495.fau.de/projects/project-a-electronic-circuits-for-piezoelectric-arrays/
Multiport and multimodal energy harvesting array systems require further circuit advancements. Wearables for health monitoring are an excellent energy harvesting example at raising interest. Further applications: smart city, building/bridge structure and environmental monitoring
The primary research goal is the development of improved circuit design for multiport harvesters dealing with asynchronous energy sources in a piezo array
Recent publications
2023
2022
2021
2020
Related Research Fields
Contact: