Prof. Dr. Aldo R. Boccaccini

Institute of Biomaterials

The Institute of Biomaterials develops and characterizes organic and inorganic materials, also in combination for applications in several biomedical fields, including coatings for implants, bone replacement, controlled drug delivery, antibacterial surfaces and wound healing, tissue engineering and tissue models.

Research projects

  • Materials research in the areas such as bone replacement, heart muscle, wound dressings, coatings, porous biomaterials (scaffolds), electrospinning and 3D bioprinting
  • 3D bioprinting will cell laden hydrogels
  • Electroactive biomaterials
  • Nanomaterials for drug delivery
  • Bioactive materials for bone regeneration
  • Flexible fibrous structures for antibacterial wound healing

  • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics

    (FAU Funds)

    Term: 1. April 2019 - 31. March 2022
    URL: https://www.biohydrogels.forschung.fau.de/

    Biological tissues such as blood vessels, skin, cartilage or nervous tissue provide vital functionality
    to living organisms. Novel computational simulations of these tissues can provide insights
    into their biomechanics during injury and disease that go far beyond traditional approaches. This
    is of ever increasing importance in industrial and medical applications as numerical models will
    enable early diagnostics of diseases, detailed planning and optimization of surgical procedures,
    and not least will reduce the necessity of animal and human experimentation. However, the extreme
    compliance of these, from a mechanical perspective, particular soft tissues stretches conventional
    modeling and testing approaches to their limits. Furthermore, the diverse microstructure
    has, to date, hindered their systematic mechanical characterization. In this project, we will, as a
    novel perspective, categorize biological tissues according to their mechanical behavior and identify
    biofabricated proxy (substitute) materials with similar properties to reduce challenges related
    to experimental characterization of living tissues. We will further develop appropriate mathematical
    models that allow us to computationally predict the tissue response based on these proxy
    materials. Collectively, we will provide a catalogue of biopolymeric proxy materials for different
    soft tissues with corresponding modeling approaches. As a prospect, this will significantly facilitate
    the choice of appropriate materials for 3D biofabrication of artificial organs, as well as modeling
    approaches for predictive simulations. These form the cornerstone of advanced medical
    treatment strategies and engineering design processes, leveraging virtual prototyping.

2021

2020

Related Research Fields

 

Contact: