Prof. Dr. Andreas Maier

Chair of Pattern Recognition

Our research interests focuses on medical imaging, image and audio processing, digital humanities, and interpretable machine learning and the use of known operators.

Research projects

  • Image Analysis and Fusion
  • Learning Algorithms for Medical Big Data Analysis (LAMBDA)
  • Magnetic Resonance Imaging (MRI)
  • Speech Processing and Understanding
  • Development of a guideline for the three-dimensional non-destructive acquisition of manuscripts
  • Intelligent MR Diagnosis of the Liver by Linking Model and Data-driven Processes (iDELIVER)
  • Molecular Assessment of Signatures ChAracterizing the Remission of Arthritis
  • Improved dual energy imaging using machine learning

Current projects

  • Temporally resolved 3-D retinal blood flow quantification using advanced motion correction
    and signal reconstruction in optical coherence tomography angiography

    (Third Party Funds Single)

    Term: since 15. November 2022
    Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)

    Die optische Kohärenztomographie (OCT) erzeugt volumetrische 3-D-Bilder von Gewebe mit Mikrometerauflösung, indem sie einen Laserstrahl zum Scannen verwendet und die Amplitude und Zeitverzögerung von zurückgestreutem Licht misst. Die OCT hat einen großen Einfluss auf die Augenheilkunde und wurde zu einer Standard-Bildgebungsmodalität für die Diagnose, die Überwachung des Krankheitsverlaufs und das Ansprechen auf die Behandlung sowie für die Untersuchung der Pathogenese von Krankheiten wie diabetischer Retinopathie, altersbedingter Makuladegeneration und Glaukom. Die jüngste Entwicklung der OCT-Angiographie (OCTA) hat die grundlegende und klinische Forschung dramatisch beschleunigt. OCTA führt eine tiefenaufgelöste (3-D) Bildgebung der retinalen Mikrovaskulatur durch, indem es wiederholt die gleiche Netzhautposition abbildet und den Bewegungskontrast von sich bewegenden Blutzellen erkennt. Im Vergleich zu herkömmlichen Ansätzen, die auf injizierten Kontrastmitteln basieren, hat OCTA den Vorteil, dass es nicht invasiv ist, sodass die Bildgebung bei jedem Patientenbesuch durchgeführt werden kann, was Längsschnittstudien ermöglicht. Allerdings hat OCTA auch einige Einschränkungen. Da eine wiederholte Bildgebung erforderlich ist, um den Blutfluss zu erkennen, sind die Aufnahmezeiten lang und die Daten können durch Augenbewegungen und Bildartefakte verzerrt werden, was eine quantitative Längsschnittanalyse erschwert. OCTA-Algorithmen können das Vorhandensein eines Blutflusses erkennen, sind jedoch nur begrenzt in der Lage, subtile Veränderungen des Flusses aufzulösen, die frühe Anzeichen einer Krankheit sein können. Zeitliche Schwankungen des Flusses, die durch den Herzzyklus oder die funktionelle Reaktion der Netzhaut verursacht werden, sind schwer zu untersuchen. Wir schlagen vor, ein neues Framework für OCTA zu entwickeln, das eine Bewegungskorrektur auf Kapillarebene ermöglicht, Blutflussgeschwindigkeiten differenziert und eine Analyse auf mehreren Zeitskalen ermöglicht (4-D OCTA). Die Fähigkeit, über die Visualisierung der Mikrovaskulatur hinauszugehen und den Fluss und seine zeitlichen Schwankungen zu beurteilen, ermöglicht die Beurteilung subtiler Beeinträchtigungen der mikrovaskulären Perfusion sowie des Herzzyklus und der Reaktion auf funktionelle Stimulation. In Kombination mit der vaskulären strukturellen Bildgebung versprechen diese Fortschritte, neue Krankheitsmarker in früheren Krankheitsstadien bereitzustellen, eine genauere Messung des Krankheitsverlaufs und des Ansprechens auf die Therapie in pharmazeutischen Studien zu ermöglichen und zur Aufklärung der Pathogenese bei Netzhauterkrankungen beizutragen.

  • Font Group Recognition for Improved OCR

    (Third Party Funds Single)

    Term: 1. August 2021 - 1. August 2023
    Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)

    Although OCR-D made huge progress in the last project phase in providing OCR for early printed books, it still faces two major problems: The huge variety of the material makes it extremely challenging to use generic OCR-models. Yet, selecting specific models is not possible as the sheer amount of material prevents a fully automatic workflow. This situation is further complicated by the lack of appropriate OCR training data. Current data sets consist overwhelmingly of texts in Fraktur, especially from the 19th century. This completely neglects the large typographic variety displayed by printing in the three previous centuries. Therefore, and in response to the demand from SLUB Dresden and ULB Halle, we propose to improve the current situation significantly1) fine tuning our font group recognition system to such a degree that it can be used at character level;2) transcribing more specific OCR training data for the 16th-18th century, which includes popular fonts such as Schwabacher, other bastards and old Fraktur styles; 3) training font-specific OCR models as well as integrated models that recognise both typeface and text simultaneously. This approach has ensured in other contexts that the network performs better on both individual tasks, as we can thus reduce overfitting during training. This project will improve OCR quality significantly, especially for books in non-Fraktur fonts. It will also provide a training data set of very high quality that can be reused in long term. Finally, the project will provide a more fine-grained font recognition tool that, beyond enabling font-specific OCR, also has important applications in text attribute recognition and layout analysis.

  • Intelligent MR Diagnosis of the Liver by Linking Model and Data-driven Processes (iDELIVER)

    (Third Party Funds Single)

    Term: 3. August 2020 - 31. March 2023
    Funding source: Bundesministerium für Bildung und Forschung (BMBF)

    The project examines the use and further development of machine learning methods for MR image reconstruction and for the classification of liver lesions. Based on a comparison model and data-driven image reconstruction methods, these are to be systematically linked in order to enable high acceleration without sacrificing diagnostic value. In addition to the design of suitable networks, research should also be carried out to determine whether metadata (e.g. age of the patient) can be incorporated into the reconstruction. Furthermore, suitable classification algorithms on an image basis are to be developed and the potential of direct classification on the raw data is to be explored. In the long term, intelligent MR diagnostics can significantly increase the efficiency of use of MR hardware, guarantee better patient care and set new impulses in medical technology.

  • From Micro To Macro: Multiscale Multimodal Data Analysis for Breast Cancer Research

    (Third Party Funds Single)

    Term: 4. May 2020 - 5. May 2023
    Funding source: Industrie

    From Micro To Macro: Multiscale Multimodal Data Analysis for Breast Cancer Research

Recent publications

2023

2022

2021

2020

Related Research Fields

Contact: